پیش بینی نقدینگی موردنیاز دستگاه های خودپرداز با استفاده از مدل خطی(arima) و غیرخطی (شبکه های عصبی)

Authors

ابراهیم عباسی

فاطمه رستگارنیا

فهیمه ابراهیمی

abstract

(صحت مطالب مقاله بر عهده نویسنده است و بیانگر دیدگاه مجمع تشخیص مصلحت نظام نیست)  هدف این مطالعه پیش بینی نقدینگی مورد نیاز دستگاه های خودپرداز با استفاده از دو مدل خطی و غیرخطی است. تامین منابع مالی در دستگاه های خودپرداز، از این نظر اهمیت دارد که لازمه فعال نگه داشتن خودپرداز در ارائه وجه نقد به متقاضیان و تامین اسکناس در دستگاه می باشد. نتایج چنین تحلیل هایی این امکان را ارائه می دهد که بتوان پیش بینی لازم برای تامین منابع مالی خودپرداز را بصورت هوشمند انجام داده و آن را در ساعات اوج تقاضا فعال نگه داشت. نمونه آماری پژوهش شامل 7 دستگاه خودپرداز بانک مهر اقتصاد خراسان رضوی طی سال های 1386-1389 بوده است. در این پژوهش تعیین میزان برداشت وجه نقد از دستگاه خودپرداز با استفاده از روش غیرخطی شبکه های عصبی مصنوعی با ساختار پروسپترون چند لایه و الگوریتم پس انتشار خطا و روش خطی arima بررسی شده است تا مدل بهینه انتخاب شود. تقاضای برداشت وجه نقد از تاریخ 4/1386 تا 7/1389 (40 ماه) به عنوان داده های آموزش و از داده های آبان 1389 تا پایان 1389 به عنوان داده های آزمایشی در نظر گرفته شده است. نتایج به دست آمده نشان دهنده برتری مدل شبکه های عصبی مصنوعی نسبت به مدل arima در پیش بینی وجه نقد مورد نیاز دستگاه خودپرداز بانک مهر اقتصاد می باشد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش‌بینی نقدینگی موردنیاز دستگاه‌های خودپرداز با استفاده از مدل خطی(ARIMA) و غیرخطی (شبکه‌های عصبی)

(صحت مطالب مقاله بر عهده نویسنده است و بیانگر دیدگاه مجمع تشخیص مصلحت نظام نیست)  هدف این مطالعه پیش‌بینی نقدینگی مورد نیاز دستگاه‌های خودپرداز با استفاده از دو مدل خطی و غیرخطی است. تامین منابع مالی در دستگاه‌های خودپرداز، از این نظر اهمیت دارد که لازمه فعال نگه داشتن خودپرداز در ارائه وجه نقد به متقاضیان و تامین اسکناس در دستگاه می‌باشد. نتایج چنین تحلیل‌هایی این امکان را ارائه می‌دهد که بتو...

full text

پیش بینی تقاضای نقدینگی موردنیاز دستگاه های خودپرداز با رویکرد شبکه های عصبی مصنوعی

امروزه، علی رغم گسترش فن آوری های نوین بانکداری اینترنتی، تقاضای وجه نقد همچنان بالاست. بانک ها و موسسات مالی در سرتاسر جهان به منظور تحقق نیازهای مشتریان، دائما در حال توسعه شبکه های خروجی وجه نقد، شامل شعب و دستگاه های خودپرداز هستند. با افزایش نرخ بهره و تاکید روزافزون بر اهمیت کارآیی، توجه بسیاری از بانک ها و موسسات مالی به مدیریت کارآی نقدینگی شبکه دستگاه های خودپرداز جلب شده است. مدیریت ن...

15 صفحه اول

پیش بینی منابع مالی بانک با استفاده از مدل خطی( ARIMA) و غیرخطی شبکه های عصبی مصنوعی فازی

یکی از مهم‌ترین موارد مورد علاقه مدیران بانکی به عنوان متغیری تأثیرگذار بر صنعت بانکداری، اطلاع از وضعیت سپرده‌های بانکی است که فعالیت بانک تا حد زیادی بستگی به آن دارد. ازاین‌رو مدیران بانک‌ها علاقه‌مند هستند بدانند که میزان کل سپرده‌های بانک در زمان معینی در آینده چقدر خواهد بود. پیش‌بینی میزان سپرده‌ها، تغییر و نوسان این سپرده­ها می‌تواند در امر برنامه­ریزی و تصمیم­گیری به بانک‌ها کمک نماید....

full text

مدل سازی و پیش بینی رشد اقتصادی در ایران با استفاده از شبکه های عصبی مصنوعی

شبکه های عصبی مصنوعی، یک ابزار قدرتمند برای تجزیه و تحلیل داده ها و مدل سازی روابط غیر خطی به حساب می آید که استفاده از آن طی سال های گذشته در اقتصاد کلان گسترش یافته است. در این مطالعه، کارایی یک مدل شبکه عصبی با یک مدل خطی رگرسیون برای پیش بینی نرخ رشد اقتصادی در ایران مقایسه می شود. برای این منظور ابتدا، یک مدل رگرسیون رشد برای دوره 1315-1373 برآورد شده و سپس با همان مجموعه رگرسورها (متغیرها...

full text

استفاده از رهیافت های شبکه عصبی و مدل های خودرگرسیونی در پیش بینی رشد اقتصادی ایران

یکی از مسائل مهم در اقتصاد پیش بینی رشد اقتصادی می باشد که با توجه به اینکه، پیش بینی صحیح رشد اقتصادی، آثار مهمی در سیاست گذاری و برنامه ریزی های اقتصادی دولت دارد و می تواند علاوه بر ایجاد زمینه‌ی توسعه روش های جدید پیش بینی، سیاست گذاران را در تصمیم گیری آتی یاری رساند، لذا هدف این مقاله پیش بینی رشد اقتصادی ایران با استفاده از سه مدل شبکه عصبی، میانگین متحرک خودرگرسیون تجمعی، خودرگرسیون وار...

full text

پیش بینی نوسانات بازده بازار با استفاده از مدل های ترکیبی گارچ ـ شبکه عصبی

در این پژوهش به مطالعه توان پیش بینی طیف وسیعی از مدل های ناهمسانی واریانس شرطی (G)ARCH طی یک دوره 126 ماهه بر روی بازده روزانه شاخص کل بورس تهران (TEDPIX) پرداخته شده است. نتایج بررسی این مدل ها تأیید کننده وجود سه ویژگی نوسان خوشه ای، عدم تقارن و نیز غیر خطی بودن، در سری زمانی بازده می باشد. سپس با هدف افزایش قدرت پیش بینی، این مدل ها با شبکه های عصبی مصنوعی ترکیب شده اند و نتایج حاصل از طرق ...

full text

My Resources

Save resource for easier access later


Journal title:
سیاست های راهبردی و کلان

Publisher: کمیسیون نظارت دبیرخانه مجمع تشخیص مصلحت نظام

ISSN ‪۲۳۴۵-۲۵۴۴

volume 2

issue شماره 8 2015

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023